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Exact phase diagrams for an Ising model on a two-layer Bethe lattice
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~Received 20 May 1998; revised manuscript received 17 February 1999!

Using an iteration technique, we obtain exact expressions for the free energy and the magnetization of an
Ising model on a two-layer Bethe lattice with intralayer coupling constantsJ1 and J2 for the first and the
second layer, respectively, and interlayer coupling constantJ3 between the two layers; the Ising spins also
couple with external magnetic fields, which are different in the two layers. We obtain exact phase diagrams for
the system and find that whenuJ3u→0, DTc[@Tc(J3)2Tc(0)#/Tc(0);uJ3 ]/J1u1/c, where Tc(J3) is the
phase-transition temperature for the system with interlayer coupling constantJ3 and the shift exponentc is 1
for J15J2 and is 0.5 forJ1ÞJ2. Such results are consistent with predictions of a scaling theory. We also
derive equations forDTc when uJ3u approaches̀ . @S1063-651X~99!08606-7#

PACS number~s!: 05.50.1q, 68.35.Rh, 64.60.Cn
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I. INTRODUCTION

The physical properties of various magnetic-layered str
tures and superlattices have been intensely studied both
perimentally and theoretically for reasons ranging from fu
damental investigations of phase transitions to techn
problems encountered in thin-film magnets@1#. Experimen-
tally, submonolayer and monolayer films of ferromagne
materials offer challenging opportunities to fabricate mate
als with various novel magnetic properties, such as g
magnetoresistance, surface magnetic anisotropy, enha
surface magnetic moment, and surface magnetoelastic
pling. On theoretical grounds, surface magnetism has b
treated within several different frameworks: mean-field a
proximations@2#, effective-field theories@3#, spin-fluctuation
theory@4#, renormalization-group methods@5#, two-site clus-
ter approximations@6#, and Monte Carlo techniques@7#.
Though each method has it own advantages, they all h
limitations in treating film systems. Numerical techniqu
such as the Monte Carlo method can provide very accu
results for properties of finite systems; however, they
computation intensive and can be carried out only for re
tively small system sizes.

Since exact solutions for realistic layer systems on reg
lattices are generally unavailable, one relies on approxi
tion schemes to obtain a qualitative picture of the phase
gram. In our approach, we replace the original two-la
regular lattice by a two-layer Bethe lattice with the sam
coordination numberq as the original lattice. Once this ap
proximation is made, we can solve our model exactly as
the case of one-layer Bethe lattice@8#. It is now widely rec-
ognized~see, e.g.,@9–12#! that in many cases solutions of
spin model on Bethe or generalized Bethe lattices are qu
tatively better approximations for the regular lattice than
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lutions obtained by conventional mean-field theories,
cause of the presence of correlations~albeit weak ones! in
the former@13# and the lack of correlations in the latter.
has also been found that phase diagrams of an Ising m
on a Husimi tree~a Bethe-like lattice! with two-spin and
three-spin interactions@10,11# closely match exact phase dia
grams of an Ising model on a two-dimensional Kagome
tice with two-spin and three-spin interactions@14#. Of
course, our approximation also has limitations: since co
lations are weak@13#, it predicts a transition temperature th
is higher than that for a regular lattice, and it is usually n
reliable for predicting critical exponents. On the other ha
the Monte Carlo method will be highly reliable for predictin
critical exponents. But we believe that our approach c
rectly gives the general shape of the phase diagram.

It is well known that the Bethe and Bethe-like lattice
cannot be embedded in a finite-dimensional Euclidean sp
without distortion in their bond angles and lengths@15#. On
the other hand, it has been pointed out by Mosseri and Sa
@16# that these structures can be considered as regular lat
of fixed bond angles and lengths if they are embedded
two-dimensional space of constant negative curvature~the
hyperbolic or Lobachevsky planeH2 @17#!. The surface of
negative curvature are now being introduced to desc
some complex structure with large cells, formed by inorga
and organic materials, which can be considered as crysta
surface and films. Among them are the cubic crystall
structures formed by amphiphilic molecules in the prese
of water @18,19# and a magnetically coupled three
dimensional~Terephthalato! manganese~II ! network@20,21#.
Furthermore, non-Euclidean hyperbolic symmetries ha
even been found in hexagonal and cubic-close-packed
clidean crystals@22#. The local structural similarities be
tween that material and negatively curved Bethe lattice s
gest that the two-layer Bethe lattice considered in the pre
paper can be related to some physical systems.

In this paper, we use an iteration technique to obtain ex
expressions for the free energy and the magnetization o
Ising model on a two-layer Bethe lattice with intralayer co

,
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pling constantsJ1 andJ2 for the first and the second laye
respectively, and interlayer coupling constantJ3 between
two layers; the Ising spins also couple with external m
netic fields, which are different in the two layers. Allowin
for a difference in these two fields is important, because t
act in an opposing manner on the zero-field boundaries@23#.
We obtain exact phase diagrams for the system and find
when uJ3u→0, DTc[@Tc(J3)2Tc(0)#/Tc(0);uJ3 ]/J1u1/c,
whereTc(J3) is the phase-transition temperature for the s
tem with interlayer coupling constantJ3 and the shift expo-
nentc is 1 for J15J2 and is 0.5 forJ1ÞJ2. Such results are
consistent with predictions of a scaling theory@24–26#. We
also derive equations forDTc when uJ3u approach̀ .

The theoretical works on thin-layer systems before
present paper were less general. The system of coupled
dimensional Ising planes on regular lattices, e.g., the sq
lattice, is not exactly soluble; however, it has been inve
gated by a variety of approximate methods. Ballentine@28#
used high-temperature series expansions to study the m
with J15J25J3 @27#. This work was later extended by Alla
@29# to films up to five layers and by Capehart and Fish
@30# to films up to ten layers. The two-layer system whe
the interlayer coupling constant differs from the intralay
coupling constant was studied by Abe@24# in the context of
a scaling theory valid in the limit of a weak interlayer co
pling. The more general case in whichJ1ÞJ2 has also re-
ceived some attention. The most complete treatment was
of Oitmaa and Enting@31#, who combined mean-field theory
scaling theory, and high-temperature expansions in a s
of the two-layer model, and calculated the variation of t
critical temperature, the layer magnetizations, and the in
layer correlation function withJ3. Recently, Ferrenberg an
Landau@32# considered the same two-layer problem us
Monte Carlo simulations and mean-field theory. The Be
lattice version of a thin film was first studied in@33#, in
which the phase diagrams of coupled bilayers withJ15J2
and zero external fields were obtained.

More recently, there have been many investigations of
two-layer Ising model due to stimulation from experimen
for ultrathin magnetic films@26,34–43#. The experimental
study of such systems has made significant advances in
cent years due to improvements in surface-force appar
and microscopic techniques. Many theoretical studies w
devoted to the model with two exchange parameters, i.eJs
for spins on free surfaces andJ for all other spins. However
in our opinion, the exchange interaction (J3) between the
surface and the second layer has an important influenc
the surface magnetic order. Therefore, in the present pa
we study an Ising model on a two-layer Bethe lattice w
three exchange parametersJ1 , J2, andJ3 and in the presence
of magnetic fields, which are different in the two layers. W
will calculate the free energy of that system and investig
its critical properties.

In previous papers@44,45#, the relations between the fre
energies of a spin-1 Ising model on Bethe and Cayley tr
and of a multisite Ising model on Husimi lattices and gen
alized Cayley trees are obtained. In that approach one
tains the free-energy from recursion relations, and equat
for physical quantities by differentiation of the free-ener
functionals with respect to external fields. Recently, an
egant and original method of computing the bulk free ene
-
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for any model on infinite Bethe and Husimi lattices was p
sented by Gujrati@12#. In the present paper, we extend th
method to study an Ising model on a bilayer Bethe lattice
particular, we will calculate exact phase diagrams and
shift exponentc for the system.

In 1970-1971, Abe@24# and Suzuki@25# used a scaling
theory to predict that the shift exponentc for the two-layer
planar lattice Ising model is equal to the susceptibility exp
nent (g51.75) of the two-dimensional Ising model. In 199
Angelini et al.predicted thatc51.5 @40#; in 1993, Lipowski
and Suzuki predicted thatc52 @36#. Very recently, Horigu-
chi and Tsushima@26# used ab-function approach@46# to
obtain c51.7360.04 for the two-layer square lattice Isin
model with J15J2, which is very close to the theoreticall
predicted valuec5g51.75. They also found that the shi
exponentc for the system withJ1ÞJ2 is 0.5 and explained
this value in terms of a scaling theory. In 1998 Lipowski@47#
used a transfer-matrix mean-field approximation to calcu
the shift exponentc. He foundc51.79 for the system with
J15J2 andc50.501 for the system withJ1ÞJ2.

In this paper, we consider bothJ15J2 andJ1ÞJ2 for the
Ising model on a two-layer Bethe lattice and obtain ex
values ofc, which are consistent with the predictions of th
scaling theory.

The outline of this paper is as follows. In Sec. II, w
present the bilayer Ising model and discuss different type
ground states. In Sec. III, we derive the exact free ene
equations of state, and order parameters for the Ising m
on the bilayer Bethe lattice. In Sec. IV, we investigate te
perature dependence of the order parameters and discus
phase diagrams. In Sec. V, we calculate the critical temp
ture in weak and strong vertical coupling regimes and obt
exactly the shift exponentc. In Sec. VI, we conclude with
some general remarks concerning our results.

II. TWO-LAYER MODEL AND ITS GROUND STATES

In this section, we consider an ultrathin film composed
two atomic layersG1 andG2 such that the lattice structure
of G1 andG2 are identical and each of them haveN sites and
coordination numberq; the corresponding lattice sites inG1
andG2 are labeled byi and i 8, respectively, where 1< i ,i 8
<N and they are nearest neighbors~NN! to each other. The
Ising Hamiltonian on such two-layer lattice can be written

2bH5J1(̂
i j &

sisj1J2 (
^ i 8 j 8&

s i 8s j 81J3(
^ i i 8&

sis i 81h1(
i

si

1h2(
i 8

s i 8 , ~1!

where b5(kBT)21 with kB being the Boltzmann constan
andT being the temperature,si ands i 8 take values61, J1
and J2 are, respectively, the coupling constants of the
change interaction between the pair of NN spins in the fi
and the second layer,J3 is the coupling constant between
spin in the first layer and its NN in the second layer, andh1
andh2 are magnetic fields acting on spins in the first and
second layer, respectively.
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This model has three order parameters, two of which c
respond to the thermal average of total spins of the first
the second layers, respectively,

m15
1

N (
i 51

N

^si&, m25
1

N (
i 851

N

^s i 8&. ~2!

These order parameters can be defined by variation of
partition function with respect toh1 andh2. The total mag-
netization densitym and the density of staggered magnetiz
tion h are defined by

m5 1
2 ~m11m2!, h5 1

2 ~m12m2!. ~3!

The third order parameter corresponds to the interlayer s
spin correlation function between NN spins of adjacent l
ers,

r5
1

N (
i 5 i 851

N

~^sis i 8&2^si&^s i 8&!. ~4!

Before studying the temperature dependences of the o
parameters, let us investigate the ground states of the m
at T50 analytically. The ground-state energy in units ofuJ1u
and in the absence of magnetic fields may be described
the following Hamiltonian:

E52 (
^plaq&

F J1

uJ1u
sisj1

J2

uJ1u
s i 8s j 81

J3

quJ1u ~sis i 81sjs j 8!G .
~5!

Here the summation goes over all plaquettes and e
plaquette consists of four nearest-neighbor pairs of the t
layer system with one pair,^ i j &, on G1, one pair,̂ i 8 j 8&, on
G2, and two pairs,̂ i i 8& and ^ j j 8&, connectingG1 andG2.

By comparing the values ofE for different spin configu-
rations, we obtain the ground-state phase diagrams show
Figs. 1~a! and 1~b! for J1.0 andJ1,0, respectively. We
find five types of ground states with the following values
the order parameters (m,h,r):

~ I! m561, h50, r50,

~ II ! m50, h561, r50,

~ III ! m50, h50, r51,

~ IV ! m50, h50, r521,

~V! m561/2, h561/2, r50.

The coordinates (J2 /uJ1u,J3 /quJ1u) of the multiphase
points are

A1→~0,0!, B1→~21,1!,

C1→~21,21! for J1.0 ~6!

and

A2→~0,0!, B2→~1,1!, C2→~1,21!

for J1,0. ~7!
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Phase~I! represents the usual ferromagnetic orderingm1
5m2 (h50). Phase~II ! represents ferromagnetic orderin
in G1 andG2, but magnetizations inG1 andG2 are antipar-
allel, i.e., m152m2 and m50 ~interlayer ordering is anti-
ferromagnetic type!. It is worthwhile to note that this phas
corresponds to the well-known compensation phenomen
which occurs when the magnetizations of two layers can
each other instead of being equal. Phase~III ! represents the
antiferromagnetic ordering in both layers (m15m250)
where interlayer ordering is ferromagnetic (r51). Phase
~IV ! represents the totally antiferromagnetic ordering (r5
21). Phase~V! represents the ferromagnetic ordering (m
561/2,h561/2), which is equivalent to the case that th
ground state of one layer is ferromagnetic and the gro
state of another layer is antiferromagnetic. The phases~I!–
~V! will be referred to as~F! ferromagnetic,~C! compen-
sated,~M! mixed, ~A! antiferromagnetic and surface ferro
magnetic~SF! phase, respectively.

III. EQUATIONS OF STATE AND FREE ENERGY

Let us consider an Ising model on a bilayer Bethe latti
which is constructed by connecting to the central pair of s
q pairs in order to form the first generation and by conne
ing successively (q21) pairs to each pair in a generation
form the next generation. The result is an infinite lattice

FIG. 1. Ground-state phase diagram of the two-layer Is
model for ~a! J1.0 and~b! J1,0.
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which every site has (q11) nearest neighbors, whereq near-
est neighbors are in the same layer as the site and one ne
neighbor is in another layer.

The partition function of the system represented by E
~1! may be written as

Z5 (
$s,s%

expH J1(̂
i j &

sisj1J2 (
^ i 8 j 8&

s i 8s j 8

1J3(
^ i i 8&

s i 8si1h1(
i

si1h2(
i 8

s i 8J , ~8!

where the sum goes over all configurations of the system
Now we derive exact recursion relations forZ. When the

Bethe tree is cut apart at the central pair, it separates inq
identical branches, each of which contains (q21) branches.
The partition function can be written as follows:

Z5 (
$s0 ,s0%

exp$J3s0s01h1s01h2s0%gn
q~s0 ,s0!, ~9!

wheres0 and s0 are the spins of the central pair,n is the
number of generations (n→` corresponds to the thermody
a
th

si
th
n
tio
rest

.

namic limit where surface effects may be neglected!, and
gn(s0 ,s0) is the partition function of a separate branch. Ea
branch, in turn, can be cut apart at the pair of sites neare
the central pair. The expression forgn(s0 ,s0) can, therefore,
be written in the following form:

gn~s0 ,s0!5 (
$s1 ,s1%

exp$J1s0s11J2s0s11J3s1s1

1h1s11h2s1%gn21
q21~s1 ,s1!. ~10!

Let us introduce the following variablesxn , yn , andtn ,

xn5
gn~11 !

gn~22 !
, yn5

gn~12 !

gn~21 !
, tn5

gn~21 !

gn~22 !
.

From Eq.~10! we easily obtain the recursion relations:

xn5 f 1~xn21 ,yn21 ,tn21!,

yn5 f 2~xn21 ,yn21 ,tn21!, ~11!

tn5 f 3~xn21 ,yn21 ,tn21!,

where
f 1~xn ,yn ,tn!5
An exp~J11J2!1exp~2J12J2!1Dn exp~J12J2!1Bn exp~2J11J2!

An exp~2J12J2!1exp~J11J2!1Dn exp~2J11J2!1Bnexp~J12J2!
,

f 2~xn ,yn ,tn!5
An exp~2J11J2!1exp~J12J2!1Dn exp~2J12J2!1Bn exp~J11J2!

An exp~J12J2!1exp~2J11J2!1Dn exp~J11J2!1Bn exp~2J12J2!
,

f 3~xn ,yn ,tn!5
An exp~J12J2!1exp~2J11J2!1Dn exp~J11J2!1Bn exp~2J12J2!

An exp~2J12J2!1exp~J11J2!1Dn exp~2J11J2!1Bn exp~J12J2!
,

with

An5xn
q21 exp~2h112h2!, Dn5tn

q21 exp~22J312h1!, Bn5yn
q21tn

q21 exp~22J312h2!.
In
Throughxn , yn , andtn , one can express the magnetiz
tion and other thermodynamic quantities, so we can say
in the thermodynamic limit (n→`) xn , yn , and tn deter-
mine the states of the system. For this reason the recur
relations can also be called the equations of state for
two-layer Ising model. The magnetizations of the first a
the second layers as well as the spin-spin correlation func
between spins of adjacent layers are expressed by

m15^s0&5
xnAn211tnDn2yntnBn

xnAn111tnDn1yntnBn
, ~12!

m25^s0&5
xnAn212tnDn1yntnBn

xnAn111tnDn1yntnBn
, ~13!

^s0s0&5
xnAn112tnDn2yntnBn

xnAn111tnDn1yntnBn
. ~14!
-
at

on
e

d
n

We are interested in the case when (xn ,yn ,tn) converges
to a stable point (xs ,ys ,ts), which is associated with the
thermodynamic solutions of the two-layer Ising model.
this case the recursion relations~or equations of state! given
by Eq. ~11! can be rewritten in the following form:

S 12y

11yD q21

exp~2h222h1!5
u12v1

u11v1
, ~15!

S 12t

11t D
q21

exp~2h112h2!5
u22v2

u21v2
, ~16!

x2(q21)S 12y2

12t2 D q21

exp~24J3!5
u1

22v1
2

u2
22v2

2
, ~17!

where

u15c1x2c2 , v15s1xy1s2t,
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c15cosh~J11J2!, s15sinh~J11J2!,

u25c12c2x, v25s1t1s2xy,

c25cosh~J12J2!, s25sinh~J12J2!,

and

x5
11ys

11xs
ts , y5

12ys

11ys
, t5

12xs

11xs
.

The total magnetization density@m5(m11m2)/2#, the
density of the staggered magnetization@h5(m12m2)/2#
and the density of the interlayer spin-spin correlation fu
tion (r5^s0s0&2m1m2) can be expressed as

m52
tu21v2

u21tv21xu11v1xy
, ~18!

h5
~xyu11xv1!

u21tv21xu11v1xy
, ~19!

r5
~12t2!~u2

22v2
2!2x2~12y2!~u1

22v1
2!

~u21tv21xu11xyv1!2
. ~20!

In the case when (xn ,yn ,tn) converge to a stable poin
(xs ,ys ,ts), we can obtain an equation for the free-ener
functionalF:

2bF52
1

8
ln~u1

22v1
2!~u2

22v2
2!

1
q21

8
ln x2~12t2!~12y2!

2
q22

4
ln~u21tv21xu11xyv1!

1
1

2
ln 21

q

4
lnuc1

22c2
2u. ~21!

In deriving this equation we have used the exact relat
between the free energy of the Bethe lattice and Cayley t
@12,44,45#.

It is easily seen that the expressions for the order par
etersm1 , m2, andr can be obtained by differentiation of th
free-energy functional of Eq.~21! with respect to the mag
netic fieldsh1 , h2 and the coupling constantJ3, respectively.
In this sense, the interlayer coupling constantJ3 is analogous
to an external field.

This result for the free energy is very useful for locati
phase transitions in case of multiple solutions of the equa
of state and for determining the equilibrium state. Using t
free-energy functional one can obtain the full phase diagr
describing not only the continuous phase transitions but
the discontinuous ones.

In the next section we will discuss the critical properti
of our model; in particular, we will calculate the critical tem
perature as a function of ratios of coupling constants and
show the full phase diagram in the three-dimensional par
-

y

n
es

-

n
s

,
o

ill
-

eter space spanned by coupling constantsJ1 , J2, andJ3 for
different values of the coordination numberq.

IV. PHASE DIAGRAMS

Now we consider the critical properties of the Ising mod
on a two-layer Bethe lattice with different ferromagne
coupling constants (J1.0,J2.0). Without loss of general-
ity, we need only considerJ1>J2. The phase transition oc
curs whenh15h250. In this case Eqs.~15!, ~16!, and~17!
become

x2(q21)S 12y2

12t2 D q21

exp~24J3!5
u1

22v1
2

u2
22v2

2
, ~22!

~11y!q21~u12v1!5~12y!q21~u11v1!⇔v15yu1F~y2!,
~23!

~11t !q21~u22v2!5~12t !q21~u21v2!⇔v25tu2F~ t2!,
~24!

where

F~x!5S (
n50

[q22/2]

C2n11
q21 xnD Y S (

n50

[q21/2]

C2n
q21xnD ,

F~0!5q21, ~25!

andCk
q21 is a binomial coefficient.

It can be seen that there always exists one solution of
system:

~ i! y5t50, xq21 exp~22J3!5
u1

u2
.

This solution corresponds to the high-temperature param
netic phase (m150, m250). In addition to the first solution
the equations of state also have other solutions withyÞ0, t
Þ0:

s2
2x5@u1F~y2!2s1x#@u2F~ t2!2s1#,

~ ii ! t2@u2F~ t2!2s1#5xy2@u1F~y2!2s1x#,

x2(q21)S 12y2

12t2 D q21

exp~24J3!5
u1

22v1
2

u2
22v2

2
.

Of course, only the solution, which minimizes the fre
energy functional~21!, is thermodynamically stable. Th
others correspond to unstable or metastable states. If t
are two or more solutions that have the same minimum f
energies, these phases coexist and the system has a first-
phase transition.

When these two solutions merge into one solution, i.e.,~i!
5 ~ii !, we obtain the critical line of second-order phase tra
sitions,

exp~2J3!5
c12c2xl

c1xl2c2
xl

q21 , ~26!

wherexl is the solution of the following equation:
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s2
2xl5$@~q21!c12s1#xl2~q21!c2%

3@~q21!c12s12~q21!c2xl#. ~27!

It is convenient now to introduce the parametersk1 andk2,

k15AtanhJ1tanhJ2,

k25AtanhS 2J110.5 ln
q

q22D tanhS 2J210.5 ln
q

q22D .

~28!

The two solutionsxl
(1,2) of Eq. ~27! can thus be expressed a

xl
(1)5

12k1k2

11k1k2
, xl

(2)5
11k1k2

12k1k2
, ~29!

and the corresponding expressions for thel lines of the
second-order phase transition in the three-dimensional
rameter space spanned byJ1 , J2, andJ3 will take the form,

exp~2J3
(1)!5

k11k2

k12k2
S 12k1k2

11k1k2
D q21

, J3.0 ~30!

exp~2J3
(2)!5

k12k2

k11k2
S 11k1k2

12k1k2
D q21

, J3,0. ~31!

The critical lines of the second-order phase transition gi
by Eqs. ~30! and ~31! separate the paramagnetic~P! phase
from the ferromagnetic~F! and compensated~C! phases,
which are in turn separated by a first-order phase transi
line.

Before discussing the phase diagram, it is convenien
introduce the parametersn5J2 /J1 , d5J3 /qJ1, and T
5J1

21. In terms of theT, n, andd, Eqs.~30! and ~31! for
the l lines imply a relationT5Tc(n,d), which locates the
critical temperature as a function ofn and d for arbitrary
values of the coordination numberq. The two critical lines
start at

Tc
max5

2~11n!

ln@q/~q22!#
, uJ3u→`, ~32!

and meet each other at

Tc
min5

2

ln@q/~q22!#
, J350. ~33!

At J350 the system has a second critical point,

Tc
sec5

2n

ln@q/~q22!#
, J350. ~34!

The phase diagrams (Tc versusd) of the Ising model on
the two-layer Bethe lattice for different valuesn
51,0.75,0.5,0.25,0.1, and for different values of coordin
tion numberq53,4,6,̀ are shown in Figs. 2~a!, 2~b!, and
2~c!. A few comments are in order. ForJ350 we recover
a-

n

n

to

-

two critical temperatures of two single-layer Bethe lattic
with different intralayer ferromagnetic coupling constan
(J1 and J2). In the opposite limit ofuJ3u→`, the critical
temperature goes asymptotically to a value given by Eq.~32!
with the effective intralayer coupling constantJ1(11n),
since the interlayer pairs become rigidly correlated.

FIG. 2. Phase diagram on (J3 /qJ1 ,T/q) plane for an Ising
model on a two-layer Bethe lattice with intralayer coupling co
stantsJ1 andJ2 for the first and the second layer, respectively, a
interlayer coupling constantJ3 between two layers; here,q is the
coordination number for one-layer Bethe lattice andT51/J1.0.
~a! J15J2 and q53. A first-order phase boundary~dashed line!
separates two ordered phases designated by~F! and ~C!. The solid
line denotes the second-order phase-transition line, which sepa
paramagnetic phase~P! from two ordered phases~F! and ~C!. No-
tice thatTc is the critical temperature of the Ising model on on
layer Bethe lattice.~b! J15J2 andq53, 4, 6, and̀ . ~c! q53 and
n5J2 /J151, 0.75, 0.5, 0.25, and 0.1, which are denoted on cur
by 1, 2, 3, 4, and 5, respectively.T2 , T3 , T4, andT5 are the second
critical point of Eq.~34! for curves labeled by 2, 3, 4, and 5, re
spectively.
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V. WEAK AND STRONG INTERLAYER COUPLING
REGIMES

The spin-1/2 Ising model on a two-layer square lattice
exactly soluble only in the casesJ350 anduJ3u→`, where
it is related to the one-layer square Ising model. WhenJ3
50, the Hamiltonian given by Eq.~1! describes two un-
coupled Ising modes or, equivalently, two free fermion
fields. In strong vertical interaction limitsuJ3u→`, each pair
of spins coupled across the layers will act as a single s
and the Hamiltonian given by Eq.~1! describes a one-laye
Ising model with (J11J2) as the coupling constant.

In the weak interlayer coupling regime (J3→0) the shift
exponentc can be defined by

DTc[
Tc~J3!2Tc~0!

Tc~0!
;uJ3 /J1u1/c, ~35!

whereTc(J3) is the critical temperature when the system h
interlayer coupling constantJ3.

In this section we calculate exactly the shift exponent
the Ising model on a two-layer Bethe lattice. In the wea
coupling regime we obtain

DTc5b1~q!
uJ3u
J1

for J15J2 ~n51! ~36!

and

DTc5b2~q,n!S J3

J1
D 2

for J1.J2 ~n,1!, ~37!

where

b1~q!5
1

q22
, b2~q,n!5

ln a

8~q21! S 11an21

12an21D ~a2n21!,

with a5q/(q22).
Thus we find that the shift exponentc for the system with

J15J2 is equal to 1, which coincides with theoretically pr
dicted resultsc5g51 for the single-layer Bethe lattice. Fo
the system withJ1ÞJ2, we find thatc50.5, which also
exactly coincides with the value predicted by the scal
theory @26#.

In the strong coupling regime we have

Tc~J3!

Tc
max

512KexpS 2
2uJ3 /J1u

Tc
max D for J1>J2 ~n<1!,

~38!

where

K5
2~q21!

ln@q/~q22!#
~12b2!bq22

with

b5
q22

2~q21! F S q

q22D 1/~n11!

1S q

q22D n/~n11!G .
s

n,

s

r
-

g

It is easy to see from Eqs.~36!, ~37!, and ~38! that the be-
havior of the strong-coupling expansions is very differe
from the behavior in the weak-coupling regime. It seems t
we have obtained Eq.~38! for the two-layer system with
different intralayer coupling constants (J1ÞJ2). It should be
noted that for the caseJ15J2, equations similar to Eq.~38!
had been obtained by approximate methods@36,40#.

VI. SUMMARY AND DISCUSSION

In the present paper we have investigated an Ising mo
on a bilayer Bethe lattice with intralayer coupling consta
J1 andJ2 for the first and the second layers, respectively, a
interlayer coupling constantJ3 between the two layers. We
first analyze phase diagrams of ground states, then usin
iteration technique to obtain exact expressions for order
rameters and the free energy of the bilayer Ising model@Eqs.
~18!–~21!#. We then obtain exact phase diagrams of E
~30! and ~31! and analyze these equations in the weak a
strong interlayer coupling regimes, see Eqs.~36!–~38!. The
shift exponentsc in Eqs. ~36! and ~37! are the first exact
result to support the scaling theory forc, that states thatc is
equal to the exponent of magnetic susceptibility forJ15J2
and is equal to 0.5 forJ1ÞJ2 @24–26#. To the best of our
knowledge, it seems that Eq.~38! is a new result.

In Sec. II, we present very rich phase diagrams for grou
states. However, in Sec. IV we consider only phase diagra
for J1>J2.0. It is of interest to study the evolution of phas
diagrams in Sec. II as the temperature increases from
high temperatures. However, the analysis of such gen
phase diagrams is quite complicated.

The dependence of various quantities on the film thi
ness is a topic of current interest. In principle, we can exte
our calculations from two layers ton layers. For such a
n-layer system, we can introducen external magnetic fields
h1 , h2 , . . . , hn (hi for the i th layer with 1< i<n), C2

n

„5n(n21)/2!… interlayer coupling constants for two-laye
coupling, C3

n interlayer coupling constants for three-lay
coupling, . . . , andCn

n(51) coupling constant forn-layer

coupling. Therefore, the total number of suchfield coupling
parameters areC1

n1C2
n1C3

n1 . . . 1Cn
n52n21. Equations

~15!–~17! for two-layer systems for threefield coupling pa-
rameters (h1 ,h2 ,J3) can be extended to 2n21 equations for
2n21 field coupling parameters. It is very difficult to find
analytic or numerical solutions of these equations forn.2.
However, we can simplify the problem by reducing the nu
ber of independentfield coupling parameters, i.e., settinghi
5h for 1< i<n and keeping only a two-layer interlayer cou
pling parameter for two nearest-neighbor layers. We
working in this direction.
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