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Exact phase diagrams for an Ising model on a two-layer Bethe lattice
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Using an iteration technique, we obtain exact expressions for the free energy and the magnetization of an
Ising model on a two-layer Bethe lattice with intralayer coupling constantand J, for the first and the
second layer, respectively, and interlayer coupling consigritetween the two layers; the Ising spins also
couple with external magnetic fields, which are different in the two layers. We obtain exact phase diagrams for
the system and find that whdds|—0, AT, =[T(J3)—T(0)]/T(0)~]I31/ 34|, where T,(J;) is the
phase-transition temperature for the system with interlayer coupling coldstand the shift exponent is 1
for J,=J, and is 0.5 forJ;#J,. Such results are consistent with predictions of a scaling theory. We also
derive equations foA T, when|J;| approachese. [S1063-651X99)08606-1

PACS numbsgs): 05.50+q, 68.35.Rh, 64.60.Cn

I. INTRODUCTION lutions obtained by conventional mean-field theories, be-
cause of the presence of correlatidiasbeit weak onésin
The physical properties of various magnetic-layered structhe former[13] and the lack of correlations in the latter. It
tures and superlattices have been intensely studied both eRas also been found that phase diagrams of an Ising model
perimentally and theoretically for reasons ranging from fun-on a Husimi tree(a Bethe-like latticg with two-spin and
damental investigations of phase transitions to technicahree-spin interactionNd 0,11 closely match exact phase dia-
problems encountered in thin-film magnéid. Experimen-  grams of an Ising model on a two-dimensional Kagome lat-
tally, submonolayer and monolayer films of ferromagnetictice with two-spin and three-spin interactiojd4]. Of
materials offer challenging opportunities to fabricate materi-course, our approximation also has limitations: since corre-
als with various novel magnetic properties, such as giankations are weakl13|, it predicts a transition temperature that
magnetoresistance, surface magnetic anisotropy, enhancieddhigher than that for a regular lattice, and it is usually not
surface magnetic moment, and surface magnetoelastic coteliable for predicting critical exponents. On the other hand,
pling. On theoretical grounds, surface magnetism has beethe Monte Carlo method will be highly reliable for predicting
treated within several different frameworks: mean-field ap-critical exponents. But we believe that our approach cor-
proximationg 2], effective-field theorie$3], spin-fluctuation rectly gives the general shape of the phase diagram.
theory[4], renormalization-group methogls], two-site clus- It is well known that the Bethe and Bethe-like lattices
ter approximationg 6], and Monte Carlo techniquel]. cannot be embedded in a finite-dimensional Euclidean space
Though each method has it own advantages, they all hawsithout distortion in their bond angles and lengfii§]. On
limitations in treating film systems. Numerical techniquesthe other hand, it has been pointed out by Mosseri and Sadoc
such as the Monte Carlo method can provide very accuratgl6] that these structures can be considered as regular lattices
results for properties of finite systems; however, they aref fixed bond angles and lengths if they are embedded in a
computation intensive and can be carried out only for relatwo-dimensional space of constant negative curvafthe
tively small system sizes. hyperbolic or Lobachevsky pland2 [17]). The surface of
Since exact solutions for realistic layer systems on regulanegative curvature are now being introduced to describe
lattices are generally unavailable, one relies on approximasome complex structure with large cells, formed by inorganic
tion schemes to obtain a qualitative picture of the phase diaand organic materials, which can be considered as crystals of
gram. In our approach, we replace the original two-layersurface and films. Among them are the cubic crystalline
regular lattice by a two-layer Bethe lattice with the samestructures formed by amphiphilic molecules in the presence
coordination numbeq as the original lattice. Once this ap- of water [18,19 and a magnetically coupled three-
proximation is made, we can solve our model exactly as irdimensionalTerephthalatbmanganesél) network[20,21].
the case of one-layer Bethe lattig®]. It is now widely rec-  Furthermore, non-Euclidean hyperbolic symmetries have
ognized(see, e.g.[9—12)) that in many cases solutions of a even been found in hexagonal and cubic-close-packed Eu-
spin model on Bethe or generalized Bethe lattices are qualelidean crystalg22]. The local structural similarities be-
tatively better approximations for the regular lattice than sotween that material and negatively curved Bethe lattice sug-
gest that the two-layer Bethe lattice considered in the present
paper can be related to some physical systems.

*Electronic address: huck@phys.sinica.edu.tw In this paper, we use an iteration technigue to obtain exact
TOn leave from Theoretical Division, Yerevan Physics Institute,expressions for the free energy and the magnetization of an
Yerevan 375036, Armenia. Ising model on a two-layer Bethe lattice with intralayer cou-
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pling constantsl; andJ, for the first and the second layer, for any model on infinite Bethe and Husimi lattices was pre-
respectively, and interlayer coupling constaht between sented by Gujratj12]. In the present paper, we extend this
two layers; the Ising spins also couple with external mag-method to study an Ising model on a bilayer Bethe lattice. In
netic fields, which are different in the two layers. Allowing particular, we will calculate exact phase diagrams and the
for a difference in these two fields is important, because theghift exponent) for the system. _ .
act in an opposing manner on the zero-field bound4€8k In 1970-1971, Abg24] and Suzuki[25] used a scaling
We obtain exact phase diagrams for the system and find th##€ory to predict that the shift exponestfor the two-layer
when |J5|—0, AT =[T.(J3)—Tc(0))/Tc(0)~|I5]/3,|#,  planar lattice Ising model IS equa}l to the_ susceptibility expo-
whereT(J;) is the phase-transition temperature for the sysent (y=1.75) of the two-dimensional Ising model. In 1992,
tem with interlayer coupling constadt and the shift expo- Angelini et al. predicted thats=1.5[40]; in 1993, Lipowski
nenty is 1 forJ;=J, and is 0.5 ford; # J,. Such results are and Suzuki predicted that=2 [36]. Very recently, Horigu-
consistent with predictions of a scaling the¢®4—26. We  chi and Tsushim426] used ag-function approactj46] to
also derive equations fakT, when|J;| approacte. obtain y=1.73+0.04 for the two-layer square lattice Ising
The theoretical works on thin-layer systems before themodel withJ;=J,, which is very close to the theoretically
present paper were less general. The system of coupled twBredicted valuey=y=1.75. They also found that the shift
dimensional Ising planes on regular lattices, e.g., the squa@xponenty for the system with]; # J, is 0.5 and explained
lattice, is not exactly soluble; however, it has been investithis value in terms of a scaling theory. In 1998 Lipowski]
gated by a variety of approximate methods. Ballenfiz@  used a transfer-matrix mean-field approximation to calculate
used high-temperature series expansions to study the modée shift exponenty. He foundy=1.79 for the system with
with J;=J,=J; [27]. This work was later extended by Allan J1=J> and ¢=0.501 for the system witl; # J,.
[29] to films up to five layers and by Capehart and Fisher In this paper, we consider both =J, andJ, # J, for the
[30] to films up to ten layers. The two-layer system wherelsing model on a two-layer Bethe lattice and obtain exact
the interlayer coupling constant differs from the intralayervalues ofy, which are consistent with the predictions of the
coupling constant was studied by Af#4] in the context of ~ scaling theory.
a scaling theory valid in the limit of a weak interlayer cou-  The outline of this paper is as follows. In Sec. Il, we
pling. The more general case in whidh#J, has also re- present the bilayer Ising model and discuss different types of
ceived some attention. The most complete treatment was th@found states. In Sec. Ill, we derive the exact free energy,
of Oitmaa and Entin§31], who combined mean-field theory, €equations of state, and order parameters for the Ising model
scaling theory, and high-temperature expansions in a studyn the bilayer Bethe lattice. In Sec. IV, we investigate tem-
of the two-layer model, and calculated the variation of theperature dependence of the order parameters and discuss the
critical temperature, the layer magnetizations, and the intePhase diagrams. In Sec. V, we calculate the critical tempera-
layer correlation function wittl;. Recently, Ferrenberg and ture in weak and strong vertical coupling regimes and obtain
Landau[32] considered the same two-layer problem usingexactly the shift exponent. In Sec. VI, we conclude with
Monte Carlo simulations and mean-field theory. The Bethesome general remarks concerning our results.
lattice version of a thin film was first studied {83], in
which the phase diagrams of coupled bilayers witl+ J,
and zero external fields were obtained. Il. TWO-LAYER MODEL AND ITS GROUND STATES
More recently, there have been many investigations of the |n this section, we consider an ultrathin film composed of
two-layer Ising model due to stimulation from experimentsyyq atomic layerss; andG, such that the lattice structures
for ultrathin magnetic filmg26,34-43. The experimental ¢ G, andG, are identical and each of them haVesites and
study of such systems has made significant advances in rggordination numbeg; the corresponding lattice sites @,
cent years due_ to improvements in surfac_e-force apparatug, q G, are labeled by andi’, respectively, where i i’
and microscopic techniques. Many theoretical studies were.n 4ng they are nearest neighbdNN) to each other. The

devoted to the model with two exchange parameters,Js€., |sing Hamiltonian on such two-layer lattice can be written as
for spins on free surfaces addor all other spins. However,

in our opinion, the exchange interactiod;] between the
surface and the second layer has an important influence on
the surface magnetic order. Therefore, in the present paperTﬁH:JlaE. Sisj+Jz 2 ‘Ti’ai’+J3Z Si‘Ti”thE Si
b . . i) i"i" (ii") !

we study an Ising model on a two-layer Bethe lattice with
three exchange parametéks J,, andJ; and in the presence
of magnetic fields, which are different in the two layers. We + hzz Tirs @
will calculate the free energy of that system and investigate '
its critical properties.

In previous paperf44,45, the relations between the free where 8= (kgT) ! with kg being the Boltzmann constant
energies of a spin-1 Ising model on Bethe and Cayley treeand T being the temperaturs; and o take valuest1, J;
and of a multisite Ising model on Husimi lattices and gener-and J, are, respectively, the coupling constants of the ex-
alized Cayley trees are obtained. In that approach one olshange interaction between the pair of NN spins in the first
tains the free-energy from recursion relations, and equationsnd the second layedg is the coupling constant between a
for physical quantities by differentiation of the free-energyspin in the first layer and its NN in the second layer, &nd
functionals with respect to external fields. Recently, an elandh, are magnetic fields acting on spins in the first and the
egant and original method of computing the bulk free energysecond layer, respectively.
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This model has three order parameters, two of which cor- Phase(l) represents the usual ferromagnetic orderimg
respond to the thermal average of total spins of the first ané=m, (=0). Phaseg(ll) represents ferromagnetic ordering
the second layers, respectively, in G; andG,, but magnetizations i, andG, are antipar-

LN LN allel, i.e., m1=—rr;92 and m=0 (interlayer ordering is anti-
B . ferromagnetic type It is worthwhile to note that this phase
M=N .21 (si), M=N i§1 {oi1). 2) corresponds to the well-known compensation phenomenon,
- which occurs when the magnetizations of two layers cancel
These order parameters can be defined by variation of theach other instead of being equal. Phé#e represents the
partition function with respect th; andh,. The total mag- antiferromagnetic ordering in both layeran{=m,=0)
netization densityn and the density of staggered magnetiza-where interlayer ordering is ferromagnetip=1). Phase

tion # are defined by (IV) represents the totally antiferromagnetic orderimpg=(
L . —1). Phaseg(V) represents the ferromagnetic ordering (
m=3z(My+my), 7=3(M—my). ©) ==*1/2,3==*1/2), which is equivalent to the case that the

r,ground state of one layer is ferromagnetic and the ground
state of another layer is antiferromagnetic. The phdbes
(V) will be referred to ag(F) ferromagnetic,(C) compen-
sated,(M) mixed, (A) antiferromagnetic and surface ferro-
N magnetic(SF) phase, respectively.

P:% 2 (sioi)—(s){oi)). 4)
1

Y]
=1 =

The third order parameter corresponds to the interlayer spi
spin correlation function between NN spins of adjacent lay
ers,

Ill. EQUATIONS OF STATE AND FREE ENERGY

Before studying the temperature dependences of the order | o 5 consider an Ising model on a bilayer Bethe lattice,
parameters, let us investigate the ground states of the modgh,ich, is constructed by connecting to the central pair of sites
atT=0 analytically. The ground-state energy in unitddffl ¢ nairs in order to form the first generation and by connect-
and in the absence of magnetic fields may be described By g ccessivelyd— 1) pairs to each pair in a generation to
the following Hamiltonian: form the next generation. The result is an infinite lattice in

Jq Js J3
1l

- > =SS oo+ (siojr+s;071)|. J3lady
iy [T 5S T [3 77 gay (5v si @

(5

E=

Here the summation goes over all plaquettes and eacl A ™ A ®
plaquette consists of four nearest-neighbor pairs of the two- M
layer system with one paitjj), on G,, one pair,(i'j’), on B 1
G,, and two pairs{ii ') and{jj '), connectingG, andG,.
By comparing the values d for different spin configu- Ap e 1 i,
rations, we obtain the ground-state phase diagrams showni {4 0
Figs. Aa and ib) for J;>0 andJ;<0, respectively. We
find five types of ground states with the following values of

_ A
the order parametersn, »,p): H @ W ©

¢,

(h m=x1, 7=0, p=0,

(1 m=0, n==*1, p=0,

(b) 37413
(nry m=0, #»=0, p=1, h<o
(V) m=0, 7=0, p=-1, N M
M M
(V)  m==1/2, p==*1/2, p=0. n
1 . 2
The coordinates J,/|J4],J3/q|J1]) of the multiphase N LM e
points are o W 32114
Al_>(010)1 Bl_)( - 111)1 1 Cz
Ci(~1-1) for 3,50 ©®) o o e
and

A,—(0,0), By,—(L1,1), C,—(1,-1)
FIG. 1. Ground-state phase diagram of the two-layer Ising
for J;<0. (7) model for(a) J,>0 and(b) J,<0.
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which every site hasy(+ 1) nearest neighbors, whegeear- ~ namic limit where surface effects may be neglepterhd
est neighbors are in the same layer as the site and one nearflist@o.So) is the partition function of a separate branch. Each

neighbor is in another layer. branch, in turn, can be cut apart at the pair of sites nearest to
The partition function of the system represented by Eqthe central pair. The expression fy(o,So) can, therefore,
(1) may be written as be written in the following form:
Z= > expl J;>, sisjtJ, > ooy On(00,S0)= D expJiSeSi+J,0001+ 33018
{7s) i o {71.80)
s s s +hysi+hpoitgi-1(oy,50). (10
+J i"Sith sith Y 8 ) ) )
N A R ® Let us introduce the following variables,, y,, andt,,
where the sum goes over all configurations of the system. _On(+H) _On(+7) _ (=)
Now we derive exact recursion relations #@rWhen the "oga(——)’ Yn gn(—+)" " gn(——)°

Bethe tree is cut apart at the central pair, it separatesgnto . . ) )
identical branches, each of which contaigs<1) branches. From Eq.(10) we easily obtain the recursion relations:
The partition function can be written as follows: _

Xn=f1(Xn-1,Yn-1,th-1),

Z= 2 eXmJ3(TOso+ hlso+ hza'o}gg(Uo,So), (g) yn:fZ(Xn—layn—latn—l)! (11)

{o0.s0}

. . th=f3(Xn—1,Yn-1,th—1),
where o, ands, are the spins of the central pai,is the n=fs(n-1.Yn-1,t0-1)

number of generations(-o corresponds to the thermody- where

f )2 AneXRIy+ Jp) + expl— 31— J5) + Dy eXpJ1—Jp) + By eXp— 1 +Jy)
1(Xn,Yn tn) = AL exp—J;—J,)+expJi+J,)+Dexp —J;+J,) +Bexpdi— Jy)

f (X ¢ ): An exq_J1+J2)+eXF(J1—J2)+DneXK—Jl—J2)+Bn quJl+J2)
2\ An vyn tn An EXF(Jl_\]Z)_FeXF(_\]]_"—Jz)JF Dn eXF(J1+J2)+ Bn exq_\]l_\]z) ’

¢ L= AnexpJi—Jdy)+exp —Ji+ o)+ D expdi+J,) +Bexp —Ji—Js)
3O Yt = R 3, 3,) F exp(d, 1 J,) + D, expl — 3.+ 3,) 1 By exp(d;—J,)

with

A,=x9"texp2h;+2h,), D,=t1 texp—2J;3+2h;), B,=yi 3 texp—2J;+2h,).

Throughx,, y,, andt,, one can express the magnetiza- We are interested in the case wheq {y,,,t,) converges
tion and other thermodynamic quantities, so we can say thab a stable point X;,ys,ts), which is associated with the
in the thermodynamic limitf—) x,, y,, andt, deter- thermodynamic solutions of the two-layer Ising model. In
mine the states of the system. For this reason the recursidhis case the recursion relatiof@ equations of stajegiven
relations can also be called the equations of state for thby Eq.(11) can be rewritten in the following form:
two-layer Ising model. The magnetizations of the first and

the second layers as well as the spin-spin correlation function 1—-y\a-1 U;—v;
between spins of adjacent layers are expressed by Tty eXP(th—Zhl):ulJrvl, (19
_ _XnAn_1+tnDn_yntan 1—-t\91 Us,—v,
m; =(So) = XnAn+ 1+ t,D,+YntnBy’ 12 1+t eX'O(ZhlJrZhZ):uervz’ (16)
XpAn—1=tyDp+yntiB, 1—y2 -1 ul—o?
= = 2(g—1 1 1
mp <UO> XnAn+ 1+tnDn+yntan, (13) X @-1) 1t exr(—4J3)—ﬁ, (17)
2 2
XpAnt+1—t,Dy—Yy,t,B, where

00Sp) = . (14
(70S0) XnAnt1+1,Dp+yntnBny U;=CiX—Cy, U1=SXy+Syt,



PRE 59 EXACT PHASE DIAGRAMS FOR AN ISING MODEL (X . .. 6493

eter space spanned by coupling constdntsJ,, andJ; for
different values of the coordination numbegr

c;=coshJ;+J,5), si=sinh(J;+J,),

U2:C1_02X, Uzzslt+82xy,
IV. PHASE DIAGRAMS

Cy=coshiJ;—J,), Sp,=sinh(J;—J,),

Now we consider the critical properties of the Ising model
on a two-layer Bethe lattice with different ferromagnetic
coupling constantsJ;>0,J,>0). Without loss of general-
ity, we need only considei;=J,. The phase transition oc-
curs whenh;=h,=0. In this case Eq415), (16), and(17)
become

and

14y,

X = _1_ys
1+xg S’

~1exs
A

Cl+xg

The total magnetization densifym=(m;+m,)/2], the
density of the staggered magnetizatipp=(m;—m,)/2]
and the density of the interlayer spin-spin correlation func-
tion (p=(oSg)—M;m,) can be expressed as

1-y?

1-t2

g-1 ul—yp2
x2<q1>( ) exp(—4g)=——>, (22
uz—v;

(1+y)9 Hu—vy) = (1-y) Hu+vy)ev =yud(y?),

tu,+v
—— (19 29
U2+tU2+XU1+U1Xy 5
(1+)97 U= vp) = (1-1) 9" YUy +v,) v = tud(t?),
O (Xyu txuy) 1 (24
= U2+tl)2+XU1+ley’ (19 where
[q—2/2] [q—1/2]
1-t2)(ud—v3)—x3(1—y?)(us—v? _ _
p=( Juz—vp) X7y (o) (20) d(x)=| > Chix" > CIix),

(Up+tup+ XU +Xyoy)? n=0 n=o

In the case whenx{,y,,t,) converge to a stable point ®(0)=qg-1, (25

(Xs,Ys,ts), we can obtain an equation for the free—energyandcg,l is a binomial coefficient.

functional F: . . .
unctiona It can be seen that there always exists one solution of this
1 system:
— BF=—gIn(ui-vi)(u;-v3) y
(i)  y=t=0, xI lexg—2J5)=—.
-1 ., 2 2 U2
+Tlnx (1-t9)(1—-vy9)
This solution corresponds to the high-temperature paramag-
_ netic phaser; =0, m,=0). In addition to the first solution,
- Tln(u2+tv2+ XUy +XYyvq) the equations of state also have other solutions witt0, t

#0:

1
+5In 2+g|n|c§—c§|. (21) spx=[uy®(y?) —s:x][ U (t?) —sy],

M 2 2 — 2 2
In deriving this equation we have used the exact relation (ii) ETu® (1) =51 ] =xyTu P (y*) —s1x],
between the free energy of the Bethe lattice and Cayley trees
[12,44,48.

It is easily seen that the expressions for the order param-
etersm;, m,, andp can be obtained by differentiation of the

1-y?

1-t2

a-1 2_ 2

ui—v
xz(ql)( exp(—4J3):H.
U~ vy

free-energy functional of Eq21) with respect to the mag-
netic fieldsh,, h, and the coupling constadg, respectively.
In this sense, the interlayer coupling constanis analogous

Of course, only the solution, which minimizes the free-
energy functional(21), is thermodynamically stable. The
others correspond to unstable or metastable states. If there

to an external field. are two or more solutions that have the same minimum free
This result for the free energy is very useful for locating energies, these phases coexist and the system has a first-order
phase transitions in case of multiple solutions of the equatiophase transition.
of state and for determining the equilibrium state. Using this When these two solutions merge into one solution, fig.,
free-energy functional one can obtain the full phase diagran¥= (ii), we obtain the critical line of second-order phase tran-
describing not only the continuous phase transitions but alseitions,
the discontinuous ones.
In the next section we will discuss the critical properties
of our model; in particular, we will calculate the critical tem-
perature as a function of ratios of coupling constants and will
show the full phase diagram in the three-dimensional paramwherex, is the solution of the following equation:

C1—CoX\ _
exp(2J3) = =t

C1Xy—C2 (26)
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(27)

It is convenient now to introduce the parameteysandk,,

k,= ytanhl;tanhl,,

q
k,= \/tan)'( -J;+0.5 Inq_—2

The two solutions<{*? of Eq. (27) can thus be expressed as

1-kike )

1tk
Ttkeky,' 07

(1) —
*\ 1-k.ky’

tan)‘( —J,+0.5 Inq%) :

(28)

(29

and the corresponding expressions for thdines of the

second-order phase transition in the three-dimensional pa

rameter space spanned by, J,, andJ; will take the form,

1_ klkZ
1+k.K,

kit ks

(1)y =
exp(2J;”) Kk,

Ky — Ky
exﬁZng)) Zm

1+kqk,
1_ k1k2

q-1
) . J5<0.

The critical lines of the second-order phase transition given

q-1
) , J3>0 (30 i

(31)

by Egs.(30) and (31) separate the paramagnetie) phase

from the ferromagnetiqF) and compensatedC)

which are in turn separated by a first-order phase transitior

line.

Before discussing the phase diagram, it is convenient tc

introduce the parametera=J,/J;, 6=J3/qJ,

phases,

and T

=J1_1. In terms of theT, n, and &, Eqgs.(30) and(31) for

the \ lines imply a relationT=T.(n, §), which locates the
critical temperature as a function of and & for arbitrary
values of the coordination numbgr The two critical lines

start at
2(1+n)
max__
© “iaig-2] T
and meet each other at
. 2
TM=———  J,=0.
¢ “nfa/(qg-2)]" ®

At J;=0 the system has a second critical point,

Sec_ 2n

T “iaiq-2]" »~°

(32

(33

(34

The phase diagramd{ versusé) of the Ising model on

the two-layer Bethe lattice for

different values

PRE 59

J3/qdy

(a)

(F)

4

2

T/q

-4

-6

J3/qdy

(e)

2[

1k

Ts T, T, T,

a

2L

-3l

FIG. 2. Phase diagram onl{/qJ;,T/q) plane for an Ising
model on a two-layer Bethe lattice with intralayer coupling con-
stantsJ; andJ, for the first and the second layer, respectively, and
interlayer coupling constanl; between two layers; herg, is the
coordination number for one-layer Bethe lattice anhe 1/J,>0.

(@ J;=J, andq=3. A first-order phase boundargashed ling
separates two ordered phases designated-bgnd (C). The solid

line denotes the second-order phase-transition line, which separates
paramagnetic phas®) from two ordered phasd$§) and (C). No-

tice thatT, is the critical temperature of the Ising model on one-
layer Bethe lattice(b) J;,=J, andq=3, 4, 6, andx. (c) g=3 and
n=J,/J,=1, 0.75, 0.5, 0.25, and 0.1, which are denoted on curves
by 1, 2, 3, 4, and 5, respectively,, T3, T4, andTs are the second
critical point of Eq.(34) for curves labeled by 2, 3, 4, and 5, re-
spectively.

two critical temperatures of two single-layer Bethe lattices
with different intralayer ferromagnetic coupling constants
(J; and J,). In the opposite limit of|J;|—c°, the critical

=1,0.75,0.5,0.25,0.1, and for different values of coordinatemperature goes asymptotically to a value given by(B#).
tion numberg=3,4,6¢0 are shown in Figs. @), 2(b), and
2(c). A few comments are in order. Fdr=0 we recover

with the effective intralayer coupling constad(1+n),
since the interlayer pairs become rigidly correlated.
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V. WEAK AND STRONG INTERLAYER COUPLING It is easy to see from Eq$36), (37), and (38) that the be-
REGIMES havior of the strong-coupling expansions is very different
from the behavior in the weak-coupling regime. It seems that
The spin-1/2 Ising model on a two-layer square lattice isve have obtained Eq38) for the two-layer system with
exactly soluble only in the casdés=0 and|J;|— =, where different intralayer coupling constants, J,). It should be
it is related to the one-layer square Ising model. Wiign Noted that for the cas& =J,, equations similar to E¢(38)
=0, the Hamiltonian given by Eq) describes two un- Nad been obtained by approximate meth(&f40.
coupled Ising modes or, equivalently, two free fermionic
fields. In strong vertical interaction limitds;|— o0, each pair
of spins coupled across the layers will act as a single spin, In the present paper we have investigated an Ising model
and the Hamiltonian given by E@l) describes a one-layer on a bilayer Bethe lattice with intralayer coupling constants

VI. SUMMARY AND DISCUSSION

Ising model with (;+J,) as the coupling constant. J; andJ, for the first and the second layers, respectively, and
In the weak interlayer coupling regimé4—0) the shift  interlayer coupling constanl; between the two layers. We
exponentys can be defined by first analyze phase diagrams of ground states, then using an

iteration technique to obtain exact expressions for order pa-
T(J3)—T.(0) 1y rameters and the free energy of the bilayer Ising moggs.

A CETN|J3/‘]1| : (39  (18)—(21)]. We then obtain exact phase diagrams of Egs.

¢ (30) and (31 and analyze these equations in the weak and
whereT(J3) is the critical temperature when the system hasstrong interlayer coupling regimes, see E(@6)—(38). The

interlayer coupling constamts. shift exponentsys in Egs. (36) and (37) are the first exact

In this section we calculate exactly the shift exponent forfesult to support the scaling theory fgy that states thap is
the Ising model on a two-layer Bethe lattice. In the weak-€gual to the exponent of magnetic susceptibility Jg-J,

coupling regime we obtain and is equal to 0.5 fod; #J, [24-2§. To the best of our
knowledge, it seems that EB8) is a new result.
[J5] In Sec. Il, we present very rich phase diagrams for ground
ATe=Dby(q) 7~ for J1=J; (n=1) (36)  states. However, in Sec. IV we consider only phase diagrams
. for J;=J,>0. It is of interest to study the evolution of phase
and diagrams in Sec. Il as the temperature increases from 0 to

3.2 high temperatures. However, the analysis of such general

_ Y3 phase diagrams is quite complicated.
ATe bZ(q’n)(Jl) for J,>J; (n<l), (37 The dependence of various quantities on the film thick-
ness is a topic of current interest. In principle, we can extend

where our calculations from two layers ta layers. For such a
1 | 14ant n-layer system, we can introduceexternal magnetic fields
by(q)= ——, by(qn)= [ 212 )(aZ"—l) hi, hy, ..., h, (h; for the ith layer with 1<i<n), C}
_ 1 ) _ o _l Y
a-2 8a-bl1-a" (=n(n—1)/2!) interlayer coupling constants for two-layer
with a=q/(q—2). coupling, C3 interlayer coupling constants for three-layer
Thus we find that the shift exponestfor the system with  coupling, ..., andCy(=1) coupling constant fon-layer

J1=J; is equal to 1, which coincides with theoretically pre- coupling. Therefore, the total number of suigld coupling
dicted resultsy=y=1 for the single-layer Bethe lattice. For parameters ar€]+C5+C5+ ...+Cl=2"—1. Equations
the system withJ,#J,, we find thaty=0.5, which also  (15—(17) for two-layer systems for threfield coupling pa-
exactly coincides with the value predicted by the scalingrameters ki, ,h,,Js) can be extended to"2 1 equations for

theory[26]. _ _ 2"—1 field coupling parameters. It is very difficult to find
In the strong coupling regime we have analytic or numerical solutions of these equationsrfor2.
However, we can simplify the problem by reducing the num-
Te(Ja) 1—Kexd — 235134 for 3,23, (n<1), ber of independerfield coupling parameters, i.e., settiig
Toax Toax =h for 1<i=<n and keeping only a two-layer interlayer cou-

(38 pling parameter for two nearest-neighbor layers. We are

working in this direction.
where
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